\frac{12 + 144 + 20 + 3\cdot \sqrt{4} }{7} + 5\cdot 11 = 9^2 + 0

## 30 September 2009

### A test

In this post, we find out if the instructions given here (via) really work.

## 29 September 2009

### What the Hell is a Feynman Diagram?

As those of you who read my other blog know, I've been in Denmark this month, visiting the Center for the Topology and Quantization of Moduli Spaces, Department of Mathematical Sciences, Aarhus Universitet. I've gotten a fair amount of work done, attended a very fine Chern-Simons theory conference in Strasbourg, and met various people. But I miss Berkeley and its preponderence of interesting talks.

In any case, I'm in the final editing stages on my paper on Quantum Mechanics and Feynman Diagrams. Since by now I really know what those Diagrams mean, I gave an introductory talk in the PhD seminar here at Aarhus about them. My prepared notes are here; I said about half of them, and none of the interesting bits.

In any case, I'm in the final editing stages on my paper on Quantum Mechanics and Feynman Diagrams. Since by now I really know what those Diagrams mean, I gave an introductory talk in the PhD seminar here at Aarhus about them. My prepared notes are here; I said about half of them, and none of the interesting bits.

Subscribe to:
Posts (Atom)